Situational Repair of Replication Forks
نویسندگان
چکیده
Replication forks often stall or collapse when they encounter a DNA lesion. Fork regression is part of several major paths to the repair of stalled forks, allowing nonmutagenic bypass of the lesion. We have shown previously that Escherichia coli RecA protein can promote extensive regression of a forked DNA substrate that mimics a possible structure of a replication fork stalled at a leading strand lesion. Using electron microscopy and gel electrophoresis, we demonstrate that another protein, E. coli RecG helicase, promotes extensive fork regression in the same system. The RecG-catalyzed fork regression is very efficient and faster than the RecApromoted reaction (up to 240 bp s ), despite very limited processivity of the RecG protein. The reaction is dependent upon ATP hydrolysis and is stimulated by single-stranded binding protein. The RecAand RecGpromoted reactions are not synergistic. In fact, RecG functions poorly under the conditions optimal for the RecA reaction, and vice versa. When both RecA and RecG proteins are incubated with the DNA substrate, high RecG concentrations inhibit the RecA protein-promoted fork regression. The very different reaction profiles may reflect a situational application of these proteins to the rescue of stalled replication forks in vivo.
منابع مشابه
Endonuclease EEPD1 Is a Gatekeeper for Repair of Stressed Replication Forks*
Replication is not as continuous as once thought, with DNA damage frequently stalling replication forks. Aberrant repair of stressed replication forks can result in cell death or genome instability and resulting transformation to malignancy. Stressed replication forks are most commonly repaired via homologous recombination (HR), which begins with 5' end resection, mediated by exonuclease comple...
متن کاملHydroxyurea-Stalled Replication Forks Become Progressively Inactivated and Require Two Different RAD51-Mediated Pathways for Restart and Repair
Faithful DNA replication is essential to all life. Hydroxyurea (HU) depletes the cells of dNTPs, which initially results in stalled replication forks that, after prolonged treatment, collapse into DSBs. Here, we report that stalled replication forks are efficiently restarted in a RAD51-dependent process that does not trigger homologous recombination (HR). The XRCC3 protein, which is required fo...
متن کاملPARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination.
If replication forks are perturbed, a multifaceted response including several DNA repair and cell cycle checkpoint pathways is activated to ensure faithful DNA replication. Here, we show that poly(ADP-ribose) polymerase 1 (PARP1) binds to and is activated by stalled replication forks that contain small gaps. PARP1 collaborates with Mre11 to promote replication fork restart after release from re...
متن کاملReplication-Coupled Recruitment of Viral and Cellular Factors to Herpes Simplex Virus Type 1 Replication Forks for the Maintenance and Expression of Viral Genomes
Herpes simplex virus type 1 (HSV-1) infects over half the human population. Much of the infectious cycle occurs in the nucleus of cells where the virus has evolved mechanisms to manipulate host processes for the production of virus. The genome of HSV-1 is coordinately expressed, maintained, and replicated such that progeny virions are produced within 4-6 hours post infection. In this study, we ...
متن کاملAnticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks.
In bacteria, several salvage responses to DNA replication arrest culminate in reassembly of the replisome on inactivated forks to resume replication. The PriA DNA helicase is a prominent trigger of this replication restart process, preceded in many cases by a repair and/or remodeling of the arrested fork, which can be performed by many specific proteins. The mechanisms that target these rescue ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004